Discussion Problems for Math 180

Thursday, April 2, 2015

Review - take no more than five minutes per question.

1. Consider the equation

$$
x^{2}+y^{2}-2 x+6 y-6=0
$$

The graph of this equation is a circle. Where is this circle's center, and what is its radius?
2. Factor $x^{4}-16$ completely.
3. Demonstrate that the derivative of \sqrt{x} is $\frac{1}{2 \sqrt{x}}$ directly from the definition.

This time
4. Evaluate the following limits:
(a) [Briggs and Cochran, 4.7.28] $\lim _{x \rightarrow 0} \frac{\sin (x)-x}{7 x^{3}}$
(b) [Briggs and Cochran, 4.7.29] $\lim _{x \rightarrow \infty} \frac{e^{1 / x}-1}{1 / x}$
(c) [Briggs and Cochran, 4.7.44] $\lim _{x \rightarrow \pi / 2} \frac{2 \tan (x)}{\sec ^{2} x}$
5. Rearrange these expressions so that you can use l'Hôpital's rule to determine the limits, and then determine the limits.
(a) [Briggs and Cochran, 4.7.50] $\lim _{x \rightarrow 0^{+}}(\sin x) \sqrt{\frac{1-x}{x}}$
(b) [Briggs and Cochran, 4.7.54] $\lim _{x \rightarrow \infty} x-\sqrt{x^{2}+4 x}$
(c) [Briggs and Cochran, 4.7.55] $\lim _{x \rightarrow 0^{+}} x^{2 x}$
6. If $x(0)=6$ and $x^{\prime}(0)=-12$, estimate $x(0.1)$.

